A PyTorch implementation for paper Unsupervised Domain Adaptation by Backpropagation
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
wogong 6a9e484102 update svhnmodel structure, basically the same as paper, except for the last conv layers, kernel change from 5x5 to 4x4, get better result 75%. 5 years ago
core add l2 norm. 5 years ago
datasets update svhnmodel structure, basically the same as paper, except for the last conv layers, kernel change from 5x5 to 4x4, get better result 75%. 5 years ago
experiments update svhnmodel structure, basically the same as paper, except for the last conv layers, kernel change from 5x5 to 4x4, get better result 75%. 5 years ago
models update svhnmodel structure, basically the same as paper, except for the last conv layers, kernel change from 5x5 to 4x4, get better result 75%. 5 years ago
utils add synsigns_gtsrb experiment, update core codes 5 years ago
.gitignore minor update, remove some params 7 years ago
LICENSE Initial commit 7 years ago
README.md minor update 5 years ago

README.md

PyTorch-DANN

A PyTorch implementation for paper Unsupervised Domain Adaptation by Backpropagation

InProceedings (icml2015-ganin15)
Ganin, Y. & Lempitsky, V.
Unsupervised Domain Adaptation by Backpropagation
Proceedings of the 32nd International Conference on Machine Learning, 2015

Environment

  • Python 3.6
  • PyTorch 1.0

Note

  • Config() 为针对特定任务的配置参数
  • MNISTmodel() 完全按照论文中的结构,但是 feature 部分添加了 Dropout2d(),实验发现是否添加 Dropout2d() 对于最后的性能影响很大。最后实验重现结果高于论文,因为使用了额外的技巧,这里还有值得探究的地方。
  • SVHNmodel() 无法理解论文中提出的结构,为自定义结构。最后实验重现结果完美。
  • MNIST-MNISTM: python mnist_mnistm.py
  • SVHN-MNIST: python svhn_mnist.py
  • Amazon-Webcam: python office.py 由于预训练网络的问题,无法复现

Result

MNIST-MNISTM SVHN-MNIST Amazon-Webcam Amazon-Webcam10
Source Only 0.5225 0.5490 0.6420 0.
DANN(paper) 0.7666 0.7385 0.7300 0.
This Repo Source Only - - - 0.
This Repo 0.8400 0.7339 0.6528 0.

Credit