wogong
5 years ago
4 changed files with 289 additions and 165 deletions
@ -1,150 +0,0 @@ |
|||||
"""Train dann.""" |
|
||||
|
|
||||
import numpy as np |
|
||||
|
|
||||
import torch |
|
||||
import torch.nn as nn |
|
||||
import torch.optim as optim |
|
||||
from core.test import test |
|
||||
from utils.utils import save_model |
|
||||
import torch.backends.cudnn as cudnn |
|
||||
cudnn.benchmark = True |
|
||||
|
|
||||
|
|
||||
def train_dann(model, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger): |
|
||||
"""Train dann.""" |
|
||||
#################### |
|
||||
# 1. setup network # |
|
||||
#################### |
|
||||
|
|
||||
# setup criterion and optimizer |
|
||||
|
|
||||
if not params.finetune_flag: |
|
||||
print("training non-office task") |
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) |
|
||||
else: |
|
||||
print("training office task") |
|
||||
parameter_list = [{ |
|
||||
"params": model.features.parameters(), |
|
||||
"lr": 0.001 |
|
||||
}, { |
|
||||
"params": model.fc.parameters(), |
|
||||
"lr": 0.001 |
|
||||
}, { |
|
||||
"params": model.bottleneck.parameters() |
|
||||
}, { |
|
||||
"params": model.classifier.parameters() |
|
||||
}, { |
|
||||
"params": model.discriminator.parameters() |
|
||||
}] |
|
||||
optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9) |
|
||||
|
|
||||
criterion = nn.CrossEntropyLoss() |
|
||||
|
|
||||
#################### |
|
||||
# 2. train network # |
|
||||
#################### |
|
||||
global_step = 0 |
|
||||
for epoch in range(params.num_epochs): |
|
||||
# set train state for Dropout and BN layers |
|
||||
model.train() |
|
||||
# zip source and target data pair |
|
||||
len_dataloader = min(len(src_data_loader), len(tgt_data_loader)) |
|
||||
data_zip = enumerate(zip(src_data_loader, tgt_data_loader)) |
|
||||
for step, ((images_src, class_src), (images_tgt, _)) in data_zip: |
|
||||
|
|
||||
p = float(step + epoch * len_dataloader) / \ |
|
||||
params.num_epochs / len_dataloader |
|
||||
alpha = 2. / (1. + np.exp(-10 * p)) - 1 |
|
||||
|
|
||||
if params.src_dataset == 'mnist' or params.tgt_dataset == 'mnist': |
|
||||
adjust_learning_rate(optimizer, p) |
|
||||
else: |
|
||||
adjust_learning_rate_office(optimizer, p) |
|
||||
|
|
||||
# prepare domain label |
|
||||
size_src = len(images_src) |
|
||||
size_tgt = len(images_tgt) |
|
||||
label_src = torch.zeros(size_src).long().to(device) # source 0 |
|
||||
label_tgt = torch.ones(size_tgt).long().to(device) # target 1 |
|
||||
|
|
||||
# make images variable |
|
||||
class_src = class_src.to(device) |
|
||||
images_src = images_src.to(device) |
|
||||
images_tgt = images_tgt.to(device) |
|
||||
|
|
||||
# zero gradients for optimizer |
|
||||
optimizer.zero_grad() |
|
||||
|
|
||||
# train on source domain |
|
||||
src_class_output, src_domain_output = model(input_data=images_src, alpha=alpha) |
|
||||
src_loss_class = criterion(src_class_output, class_src) |
|
||||
src_loss_domain = criterion(src_domain_output, label_src) |
|
||||
|
|
||||
# train on target domain |
|
||||
_, tgt_domain_output = model(input_data=images_tgt, alpha=alpha) |
|
||||
tgt_loss_domain = criterion(tgt_domain_output, label_tgt) |
|
||||
|
|
||||
loss = src_loss_class + src_loss_domain + tgt_loss_domain |
|
||||
|
|
||||
# optimize dann |
|
||||
loss.backward() |
|
||||
optimizer.step() |
|
||||
|
|
||||
global_step += 1 |
|
||||
|
|
||||
# print step info |
|
||||
logger.add_scalar('src_loss_class', src_loss_class.item(), global_step) |
|
||||
logger.add_scalar('src_loss_domain', src_loss_domain.item(), global_step) |
|
||||
logger.add_scalar('tgt_loss_domain', tgt_loss_domain.item(), global_step) |
|
||||
logger.add_scalar('loss', loss.item(), global_step) |
|
||||
|
|
||||
if ((step + 1) % params.log_step == 0): |
|
||||
print( |
|
||||
"Epoch [{:4d}/{}] Step [{:2d}/{}]: src_loss_class={:.6f}, src_loss_domain={:.6f}, tgt_loss_domain={:.6f}, loss={:.6f}" |
|
||||
.format(epoch + 1, params.num_epochs, step + 1, len_dataloader, src_loss_class.data.item(), |
|
||||
src_loss_domain.data.item(), tgt_loss_domain.data.item(), loss.data.item())) |
|
||||
|
|
||||
# eval model |
|
||||
if ((epoch + 1) % params.eval_step == 0): |
|
||||
print("eval on target domain") |
|
||||
tgt_test_loss, tgt_acc, tgt_acc_domain = test(model, tgt_data_loader, device, flag='target') |
|
||||
print("eval on source domain") |
|
||||
src_test_loss, src_acc, src_acc_domain = test(model, src_data_loader, device, flag='source') |
|
||||
logger.add_scalar('src_test_loss', src_test_loss, global_step) |
|
||||
logger.add_scalar('src_acc', src_acc, global_step) |
|
||||
logger.add_scalar('src_acc_domain', src_acc_domain, global_step) |
|
||||
logger.add_scalar('tgt_test_loss', tgt_test_loss, global_step) |
|
||||
logger.add_scalar('tgt_acc', tgt_acc, global_step) |
|
||||
logger.add_scalar('tgt_acc_domain', tgt_acc_domain, global_step) |
|
||||
|
|
||||
|
|
||||
# save model parameters |
|
||||
if ((epoch + 1) % params.save_step == 0): |
|
||||
save_model(model, params.model_root, |
|
||||
params.src_dataset + '-' + params.tgt_dataset + "-dann-{}.pt".format(epoch + 1)) |
|
||||
|
|
||||
# save final model |
|
||||
save_model(model, params.model_root, params.src_dataset + '-' + params.tgt_dataset + "-dann-final.pt") |
|
||||
|
|
||||
return model |
|
||||
|
|
||||
|
|
||||
def adjust_learning_rate(optimizer, p): |
|
||||
lr_0 = 0.01 |
|
||||
alpha = 10 |
|
||||
beta = 0.75 |
|
||||
lr = lr_0 / (1 + alpha * p)**beta |
|
||||
for param_group in optimizer.param_groups: |
|
||||
param_group['lr'] = lr |
|
||||
|
|
||||
|
|
||||
def adjust_learning_rate_office(optimizer, p): |
|
||||
lr_0 = 0.001 |
|
||||
alpha = 10 |
|
||||
beta = 0.75 |
|
||||
lr = lr_0 / (1 + alpha * p)**beta |
|
||||
for param_group in optimizer.param_groups[:2]: |
|
||||
param_group['lr'] = lr |
|
||||
for param_group in optimizer.param_groups[2:]: |
|
||||
param_group['lr'] = 10 * lr |
|
@ -0,0 +1,266 @@ |
|||||
|
"""Train dann.""" |
||||
|
|
||||
|
import numpy as np |
||||
|
|
||||
|
import torch |
||||
|
import torch.nn as nn |
||||
|
import torch.optim as optim |
||||
|
from core.test import test |
||||
|
from utils.utils import save_model |
||||
|
import torch.backends.cudnn as cudnn |
||||
|
cudnn.benchmark = True |
||||
|
|
||||
|
|
||||
|
def train_dann(model, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger): |
||||
|
"""Train dann.""" |
||||
|
#################### |
||||
|
# 1. setup network # |
||||
|
#################### |
||||
|
|
||||
|
# setup criterion and optimizer |
||||
|
|
||||
|
if not params.finetune_flag: |
||||
|
print("training non-office task") |
||||
|
optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum) |
||||
|
else: |
||||
|
print("training office task") |
||||
|
parameter_list = [{ |
||||
|
"params": model.features.parameters(), |
||||
|
"lr": 0.001 |
||||
|
}, { |
||||
|
"params": model.fc.parameters(), |
||||
|
"lr": 0.001 |
||||
|
}, { |
||||
|
"params": model.bottleneck.parameters() |
||||
|
}, { |
||||
|
"params": model.classifier.parameters() |
||||
|
}, { |
||||
|
"params": model.discriminator.parameters() |
||||
|
}] |
||||
|
optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9) |
||||
|
|
||||
|
criterion = nn.CrossEntropyLoss() |
||||
|
|
||||
|
#################### |
||||
|
# 2. train network # |
||||
|
#################### |
||||
|
global_step = 0 |
||||
|
for epoch in range(params.num_epochs): |
||||
|
# set train state for Dropout and BN layers |
||||
|
model.train() |
||||
|
# zip source and target data pair |
||||
|
len_dataloader = min(len(src_data_loader), len(tgt_data_loader)) |
||||
|
data_zip = enumerate(zip(src_data_loader, tgt_data_loader)) |
||||
|
for step, ((images_src, class_src), (images_tgt, _)) in data_zip: |
||||
|
|
||||
|
p = float(step + epoch * len_dataloader) / \ |
||||
|
params.num_epochs / len_dataloader |
||||
|
alpha = 2. / (1. + np.exp(-10 * p)) - 1 |
||||
|
|
||||
|
if params.lr_adjust_flag == 'simple': |
||||
|
lr = adjust_learning_rate(optimizer, p) |
||||
|
else: |
||||
|
lr = adjust_learning_rate_office(optimizer, p) |
||||
|
logger.add_scalar('lr', lr, global_step) |
||||
|
|
||||
|
# prepare domain label |
||||
|
size_src = len(images_src) |
||||
|
size_tgt = len(images_tgt) |
||||
|
label_src = torch.zeros(size_src).long().to(device) # source 0 |
||||
|
label_tgt = torch.ones(size_tgt).long().to(device) # target 1 |
||||
|
|
||||
|
# make images variable |
||||
|
class_src = class_src.to(device) |
||||
|
images_src = images_src.to(device) |
||||
|
images_tgt = images_tgt.to(device) |
||||
|
|
||||
|
# zero gradients for optimizer |
||||
|
optimizer.zero_grad() |
||||
|
|
||||
|
# train on source domain |
||||
|
src_class_output, src_domain_output = model(input_data=images_src, alpha=alpha) |
||||
|
src_loss_class = criterion(src_class_output, class_src) |
||||
|
src_loss_domain = criterion(src_domain_output, label_src) |
||||
|
|
||||
|
# train on target domain |
||||
|
_, tgt_domain_output = model(input_data=images_tgt, alpha=alpha) |
||||
|
tgt_loss_domain = criterion(tgt_domain_output, label_tgt) |
||||
|
|
||||
|
loss = src_loss_class + src_loss_domain + tgt_loss_domain |
||||
|
|
||||
|
# optimize dann |
||||
|
loss.backward() |
||||
|
optimizer.step() |
||||
|
|
||||
|
global_step += 1 |
||||
|
|
||||
|
# print step info |
||||
|
logger.add_scalar('src_loss_class', src_loss_class.item(), global_step) |
||||
|
logger.add_scalar('src_loss_domain', src_loss_domain.item(), global_step) |
||||
|
logger.add_scalar('tgt_loss_domain', tgt_loss_domain.item(), global_step) |
||||
|
logger.add_scalar('loss', loss.item(), global_step) |
||||
|
|
||||
|
# if ((step + 1) % params.log_step == 0): |
||||
|
# print( |
||||
|
# "Epoch [{:4d}/{}] Step [{:2d}/{}]: src_loss_class={:.6f}, src_loss_domain={:.6f}, tgt_loss_domain={:.6f}, loss={:.6f}" |
||||
|
# .format(epoch + 1, params.num_epochs, step + 1, len_dataloader, src_loss_class.data.item(), |
||||
|
# src_loss_domain.data.item(), tgt_loss_domain.data.item(), loss.data.item())) |
||||
|
|
||||
|
# eval model |
||||
|
if ((epoch + 1) % params.eval_step == 0): |
||||
|
tgt_test_loss, tgt_acc, tgt_acc_domain = test(model, tgt_data_loader, device, flag='target') |
||||
|
src_test_loss, src_acc, src_acc_domain = test(model, src_data_loader, device, flag='source') |
||||
|
logger.add_scalar('src_test_loss', src_test_loss, global_step) |
||||
|
logger.add_scalar('src_acc', src_acc, global_step) |
||||
|
logger.add_scalar('src_acc_domain', src_acc_domain, global_step) |
||||
|
logger.add_scalar('tgt_test_loss', tgt_test_loss, global_step) |
||||
|
logger.add_scalar('tgt_acc', tgt_acc, global_step) |
||||
|
logger.add_scalar('tgt_acc_domain', tgt_acc_domain, global_step) |
||||
|
|
||||
|
|
||||
|
# save model parameters |
||||
|
if ((epoch + 1) % params.save_step == 0): |
||||
|
save_model(model, params.model_root, |
||||
|
params.src_dataset + '-' + params.tgt_dataset + "-dann-{}.pt".format(epoch + 1)) |
||||
|
|
||||
|
# save final model |
||||
|
save_model(model, params.model_root, params.src_dataset + '-' + params.tgt_dataset + "-dann-final.pt") |
||||
|
|
||||
|
return model |
||||
|
|
||||
|
def train_src_only(model, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger): |
||||
|
"""Train dann.""" |
||||
|
#################### |
||||
|
# 1. setup network # |
||||
|
#################### |
||||
|
|
||||
|
# setup criterion and optimizer |
||||
|
|
||||
|
if not params.finetune_flag: |
||||
|
print("training non-office task") |
||||
|
optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum) |
||||
|
else: |
||||
|
print("training office task") |
||||
|
parameter_list = [{ |
||||
|
"params": model.features.parameters(), |
||||
|
"lr": 0.001 |
||||
|
}, { |
||||
|
"params": model.fc.parameters(), |
||||
|
"lr": 0.001 |
||||
|
}, { |
||||
|
"params": model.bottleneck.parameters() |
||||
|
}, { |
||||
|
"params": model.classifier.parameters() |
||||
|
}, { |
||||
|
"params": model.discriminator.parameters() |
||||
|
}] |
||||
|
optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9) |
||||
|
|
||||
|
criterion = nn.CrossEntropyLoss() |
||||
|
|
||||
|
#################### |
||||
|
# 2. train network # |
||||
|
#################### |
||||
|
global_step = 0 |
||||
|
for epoch in range(params.num_epochs): |
||||
|
# set train state for Dropout and BN layers |
||||
|
model.train() |
||||
|
# zip source and target data pair |
||||
|
len_dataloader = min(len(src_data_loader), len(tgt_data_loader)) |
||||
|
data_zip = enumerate(zip(src_data_loader, tgt_data_loader)) |
||||
|
for step, ((images_src, class_src), (images_tgt, _)) in data_zip: |
||||
|
|
||||
|
p = float(step + epoch * len_dataloader) / \ |
||||
|
params.num_epochs / len_dataloader |
||||
|
alpha = 2. / (1. + np.exp(-10 * p)) - 1 |
||||
|
|
||||
|
if params.lr_adjust_flag == 'simple': |
||||
|
lr = adjust_learning_rate(optimizer, p) |
||||
|
else: |
||||
|
lr = adjust_learning_rate_office(optimizer, p) |
||||
|
logger.add_scalar('lr', lr, global_step) |
||||
|
|
||||
|
# prepare domain label |
||||
|
size_src = len(images_src) |
||||
|
size_tgt = len(images_tgt) |
||||
|
label_src = torch.zeros(size_src).long().to(device) # source 0 |
||||
|
label_tgt = torch.ones(size_tgt).long().to(device) # target 1 |
||||
|
|
||||
|
# make images variable |
||||
|
class_src = class_src.to(device) |
||||
|
images_src = images_src.to(device) |
||||
|
images_tgt = images_tgt.to(device) |
||||
|
|
||||
|
# zero gradients for optimizer |
||||
|
optimizer.zero_grad() |
||||
|
|
||||
|
# train on source domain |
||||
|
src_class_output, src_domain_output = model(input_data=images_src, alpha=alpha) |
||||
|
src_loss_class = criterion(src_class_output, class_src) |
||||
|
src_loss_domain = criterion(src_domain_output, label_src) |
||||
|
|
||||
|
# train on target domain |
||||
|
_, tgt_domain_output = model(input_data=images_tgt, alpha=alpha) |
||||
|
tgt_loss_domain = criterion(tgt_domain_output, label_tgt) |
||||
|
|
||||
|
loss = src_loss_class |
||||
|
|
||||
|
# optimize dann |
||||
|
loss.backward() |
||||
|
optimizer.step() |
||||
|
|
||||
|
global_step += 1 |
||||
|
|
||||
|
# print step info |
||||
|
logger.add_scalar('src_loss_class', src_loss_class.item(), global_step) |
||||
|
logger.add_scalar('src_loss_domain', src_loss_domain.item(), global_step) |
||||
|
logger.add_scalar('tgt_loss_domain', tgt_loss_domain.item(), global_step) |
||||
|
logger.add_scalar('loss', loss.item(), global_step) |
||||
|
|
||||
|
# if ((step + 1) % params.log_step == 0): |
||||
|
# print( |
||||
|
# "Epoch [{:4d}/{}] Step [{:2d}/{}]: src_loss_class={:.6f}, src_loss_domain={:.6f}, tgt_loss_domain={:.6f}, loss={:.6f}" |
||||
|
# .format(epoch + 1, params.num_epochs, step + 1, len_dataloader, src_loss_class.data.item(), |
||||
|
# src_loss_domain.data.item(), tgt_loss_domain.data.item(), loss.data.item())) |
||||
|
|
||||
|
# eval model |
||||
|
if ((epoch + 1) % params.eval_step == 0): |
||||
|
tgt_test_loss, tgt_acc, tgt_acc_domain = test(model, tgt_data_loader, device, flag='target') |
||||
|
src_test_loss, src_acc, src_acc_domain = test(model, src_data_loader, device, flag='source') |
||||
|
logger.add_scalar('src_test_loss', src_test_loss, global_step) |
||||
|
logger.add_scalar('src_acc', src_acc, global_step) |
||||
|
logger.add_scalar('src_acc_domain', src_acc_domain, global_step) |
||||
|
logger.add_scalar('tgt_test_loss', tgt_test_loss, global_step) |
||||
|
logger.add_scalar('tgt_acc', tgt_acc, global_step) |
||||
|
logger.add_scalar('tgt_acc_domain', tgt_acc_domain, global_step) |
||||
|
|
||||
|
|
||||
|
# save model parameters |
||||
|
if ((epoch + 1) % params.save_step == 0): |
||||
|
save_model(model, params.model_root, |
||||
|
params.src_dataset + '-' + params.tgt_dataset + "-dann-{}.pt".format(epoch + 1)) |
||||
|
|
||||
|
# save final model |
||||
|
save_model(model, params.model_root, params.src_dataset + '-' + params.tgt_dataset + "-dann-final.pt") |
||||
|
|
||||
|
return model |
||||
|
|
||||
|
def adjust_learning_rate(optimizer, p): |
||||
|
lr_0 = 0.01 |
||||
|
alpha = 10 |
||||
|
beta = 0.75 |
||||
|
lr = lr_0 / (1 + alpha * p)**beta |
||||
|
for param_group in optimizer.param_groups: |
||||
|
param_group['lr'] = lr |
||||
|
return lr |
||||
|
|
||||
|
def adjust_learning_rate_office(optimizer, p): |
||||
|
lr_0 = 0.001 |
||||
|
alpha = 10 |
||||
|
beta = 0.75 |
||||
|
lr = lr_0 / (1 + alpha * p)**beta |
||||
|
for param_group in optimizer.param_groups[:2]: |
||||
|
param_group['lr'] = lr |
||||
|
for param_group in optimizer.param_groups[2:]: |
||||
|
param_group['lr'] = 10 * lr |
||||
|
return lr |
Loading…
Reference in new issue