Browse Source

0.6528 update.

master
wogong 7 years ago
parent
commit
5a5772bc37
  1. 2
      README.md
  2. 35
      models/model.py

2
README.md

@ -26,7 +26,7 @@ A pytorch implementation for paper *[Unsupervised Domain Adaptation by Backpropa
| :-------------: | :------------: | :--------: | :--------: |
| Source Only | 0.5225 | 0.5490 | 0.6420 |
| DANN | 0.7666 | 0.7385 | 0.7300 |
| This Repo | 0.8400 | 0.7339 | 0.6214 |
| This Repo | 0.8400 | 0.7339 | 0.6428 |
- MNIST-MNISTM: `python mnist_mnistm.py`
- SVHN-MNIST: `python svhn_mnist.py`

35
models/model.py

@ -5,6 +5,7 @@ from .functions import ReverseLayerF
from torchvision import models
from .alexnet import alexnet
class Classifier(nn.Module):
""" SVHN architecture without discriminator"""
@ -42,6 +43,7 @@ class Classifier(nn.Module):
return class_output
class MNISTmodel(nn.Module):
""" MNIST architecture
+Dropout2d, 84% ~ 73%
@ -53,15 +55,17 @@ class MNISTmodel(nn.Module):
self.restored = False
self.feature = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(5, 5)), # 3 28 28, 32 24 24
nn.Conv2d(in_channels=3, out_channels=32,
kernel_size=(5, 5)), # 3 28 28, 32 24 24
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(2, 2)), # 32 12 12
nn.Conv2d(in_channels=32, out_channels=48, kernel_size=(5, 5)), # 48 8 8
nn.MaxPool2d(kernel_size=(2, 2)), # 32 12 12
nn.Conv2d(in_channels=32, out_channels=48,
kernel_size=(5, 5)), # 48 8 8
nn.BatchNorm2d(48),
nn.Dropout2d(),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(2, 2)), # 48 4 4
nn.MaxPool2d(kernel_size=(2, 2)), # 48 4 4
)
self.classifier = nn.Sequential(
@ -91,6 +95,7 @@ class MNISTmodel(nn.Module):
return class_output, domain_output
class SVHNmodel(nn.Module):
""" SVHN architecture
I don't know how to implement the paper's structure
@ -102,15 +107,17 @@ class SVHNmodel(nn.Module):
self.restored = False
self.feature = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(5, 5), stride=(1, 1)), # 3 28 28, 64 24 24
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(
5, 5), stride=(1, 1)), # 3 28 28, 64 24 24
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(2, 2)), # 64 12 12
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(5, 5)), # 64 8 8
nn.MaxPool2d(kernel_size=(2, 2)), # 64 12 12
nn.Conv2d(in_channels=64, out_channels=64,
kernel_size=(5, 5)), # 64 8 8
nn.BatchNorm2d(64),
nn.Dropout2d(),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), # 64 4 4
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), # 64 4 4
nn.ReLU(inplace=True),
)
@ -144,6 +151,7 @@ class SVHNmodel(nn.Module):
return class_output, domain_output
class AlexModel(nn.Module):
""" AlexNet pretrained on imagenet for Office dataset"""
@ -156,20 +164,21 @@ class AlexModel(nn.Module):
self.fc = nn.Sequential()
for i in range(6):
self.fc.add_module("classifier" + str(i), model_alexnet.classifier[i])
self.__in_features = model_alexnet.classifier[6].in_features # 4096
self.fc.add_module("classifier" + str(i),
model_alexnet.classifier[i])
self.__in_features = model_alexnet.classifier[6].in_features # 4096
self.bottleneck = nn.Sequential(
nn.Linear(4096, 1024),
nn.Linear(4096, 2048),
nn.ReLU(inplace=True),
)
self.classifier = nn.Sequential(
nn.Linear(1024, 31),
nn.Linear(2048, 31),
)
self.discriminator = nn.Sequential(
nn.Linear(1024, 1024),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(),
nn.Linear(1024, 1024),

Loading…
Cancel
Save