|
@ -6,20 +6,19 @@ from tensorboardX import SummaryWriter |
|
|
import torch |
|
|
import torch |
|
|
sys.path.append('../') |
|
|
sys.path.append('../') |
|
|
from models.model import GTSRBmodel |
|
|
from models.model import GTSRBmodel |
|
|
from core.train import train_dann |
|
|
|
|
|
|
|
|
from core.train import train_src |
|
|
from utils.utils import get_data_loader, init_model, init_random_seed, init_weights |
|
|
from utils.utils import get_data_loader, init_model, init_random_seed, init_weights |
|
|
|
|
|
|
|
|
class Config(object): |
|
|
class Config(object): |
|
|
# params for path |
|
|
# params for path |
|
|
model_name = "synsigns-gtsrb" |
|
|
model_name = "synsigns-gtsrb" |
|
|
model_base = '/home/wogong/models/pytorch-dann' |
|
|
model_base = '/home/wogong/models/pytorch-dann' |
|
|
note = 'src-only-40-bn-init' |
|
|
|
|
|
|
|
|
note = 'srconly' |
|
|
model_root = os.path.join(model_base, model_name, note + '_' + datetime.datetime.now().strftime('%m%d_%H%M%S')) |
|
|
model_root = os.path.join(model_base, model_name, note + '_' + datetime.datetime.now().strftime('%m%d_%H%M%S')) |
|
|
os.makedirs(model_root) |
|
|
os.makedirs(model_root) |
|
|
config = os.path.join(model_root, 'config.txt') |
|
|
config = os.path.join(model_root, 'config.txt') |
|
|
finetune_flag = False |
|
|
finetune_flag = False |
|
|
lr_adjust_flag = 'simple' |
|
|
lr_adjust_flag = 'simple' |
|
|
src_only_flag = True |
|
|
|
|
|
|
|
|
|
|
|
# params for datasets and data loader |
|
|
# params for datasets and data loader |
|
|
batch_size = 128 |
|
|
batch_size = 128 |
|
@ -70,15 +69,15 @@ init_random_seed(params.manual_seed) |
|
|
# load dataset |
|
|
# load dataset |
|
|
src_data_loader = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=True) |
|
|
src_data_loader = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=True) |
|
|
src_data_loader_eval = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=False) |
|
|
src_data_loader_eval = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=False) |
|
|
|
|
|
|
|
|
tgt_data_loader = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=True) |
|
|
tgt_data_loader = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=True) |
|
|
tgt_data_loader_eval = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=False) |
|
|
tgt_data_loader_eval = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=False) |
|
|
|
|
|
|
|
|
# load dann model |
|
|
# load dann model |
|
|
dann = init_model(net=GTSRBmodel(), restore=None) |
|
|
dann = init_model(net=GTSRBmodel(), restore=None) |
|
|
init_weights(dann) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#init_weights(dann) |
|
|
|
|
|
|
|
|
# train dann model |
|
|
# train dann model |
|
|
print("Training dann model") |
|
|
print("Training dann model") |
|
|
if not (dann.restored and params.dann_restore): |
|
|
if not (dann.restored and params.dann_restore): |
|
|
dann = train_dann(dann, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger) |
|
|
|
|
|
|
|
|
dann = train_src(dann, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger) |
|
|