Implementation of "Adversarial Discriminative Domain Adaptation" in PyTorch
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Fazil Altinel c444667ddc Add new results 4 years ago
core ResNet changes for Office dataset 4 years ago
input add .gitignore 6 years ago
models Performance improvements on ResNet 4 years ago
outputs add .gitignore 6 years ago
utils Performance improvements on ResNet 4 years ago
.gitignore Add gitignore 4 years ago
README.md Add new results 4 years ago
__init__.py Changes for new file organization 4 years ago
main.py ResNet changes for Office dataset 4 years ago

README.md

ADDA.PyTorch-resnet

Implementation of "Adversarial Discriminative Domain Adaptation" in PyTorch

This repo is mostly based on https://github.com/Fujiki-Nakamura/ADDA.PyTorch

Note

Before running the training code, make sure that DATASETDIR environment variable is set to dataset directory.

Environment

  • Python 3.8.5
  • PyTorch 1.6.0

Example

For training on SVHN-MNIST

$ python train_source.py --logdir outputs
$ python main.py --logdir outputs --trained outputs/best_model.pt --slope 0.2

For training on Office dataset using ResNet-50

$ python core/train_source_rn50.py --n_classes 31 --lr 1e-5 --src_cat amazon --tgt_cat webcam
$ python main.py --n_classes 31 --trained outputs/garbage/best_model.pt --lr 1e-5 --d_lr 1e-4 --logdir outputs --model resnet50 --src-cat amazon --tgt-cat webcam

Result

SVHN -> MNIST

Paper This Repo
Source only 0.601 0.659
ADDA 0.760 ~0.83

Office-31 Amazon -> Office-31 Webcam

Paper This Repo
Source only 0.684 0.714
ADDA 0.862 0.831

Resource