You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.7 KiB
82 lines
2.7 KiB
import os
|
|
import sys
|
|
import datetime
|
|
from tensorboardX import SummaryWriter
|
|
|
|
import torch
|
|
sys.path.append('../')
|
|
from models.model import SVHNmodel
|
|
from core.train import train_dann
|
|
from utils.utils import get_data_loader, init_model, init_random_seed
|
|
|
|
|
|
class Config(object):
|
|
# params for path
|
|
model_name = "syndigits-svhn"
|
|
model_base = '/home/wogong/models/pytorch-dann'
|
|
note = 'default'
|
|
model_root = os.path.join(model_base, model_name, note + '_' + datetime.datetime.now().strftime('%m%d_%H%M%S'))
|
|
os.makedirs(model_root)
|
|
config = os.path.join(model_root, 'config.txt')
|
|
finetune_flag = False
|
|
lr_adjust_flag = 'simple'
|
|
src_only_flag = False
|
|
|
|
# params for datasets and data loader
|
|
batch_size = 128
|
|
|
|
# params for source dataset
|
|
src_dataset = "syndigits"
|
|
src_image_root = os.path.join('/home/wogong/datasets', 'syndigits')
|
|
src_model_trained = True
|
|
src_classifier_restore = os.path.join(model_root, src_dataset + '-source-classifier-final.pt')
|
|
|
|
# params for target dataset
|
|
tgt_dataset = "svhn"
|
|
tgt_image_root = os.path.join('/home/wogong/datasets', 'svhn')
|
|
tgt_model_trained = True
|
|
dann_restore = os.path.join(model_root, src_dataset + '-' + tgt_dataset + '-dann-final.pt')
|
|
|
|
# params for GPU device
|
|
gpu_id = '0'
|
|
|
|
## for digit
|
|
num_epochs = 200
|
|
log_step = 200
|
|
save_step = 100
|
|
eval_step = 1
|
|
|
|
manual_seed = 42
|
|
alpha = 0
|
|
|
|
# params for SGD optimizer
|
|
lr = 0.01
|
|
momentum = 0.9
|
|
weight_decay = 1e-6
|
|
|
|
def __init__(self):
|
|
public_props = (name for name in dir(self) if not name.startswith('_'))
|
|
with open(self.config, 'w') as f:
|
|
for name in public_props:
|
|
f.write(name + ': ' + str(getattr(self, name)) + '\n')
|
|
|
|
params = Config()
|
|
logger = SummaryWriter(params.model_root)
|
|
device = torch.device("cuda:" + params.gpu_id if torch.cuda.is_available() else "cpu")
|
|
|
|
# init random seed
|
|
init_random_seed(params.manual_seed)
|
|
|
|
# load dataset
|
|
src_data_loader = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=True)
|
|
src_data_loader_eval = get_data_loader(params.src_dataset, params.src_image_root, params.batch_size, train=False)
|
|
tgt_data_loader = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=True)
|
|
tgt_data_loader_eval = get_data_loader(params.tgt_dataset, params.tgt_image_root, params.batch_size, train=False)
|
|
|
|
# load dann model
|
|
dann = init_model(net=SVHNmodel(), restore=None)
|
|
|
|
# train dann model
|
|
print("Training dann model")
|
|
if not (dann.restored and params.dann_restore):
|
|
dann = train_dann(dann, params, src_data_loader, tgt_data_loader, tgt_data_loader_eval, device, logger)
|
|
|