Fazil Altinel
4 years ago
8 changed files with 319 additions and 24 deletions
@ -0,0 +1,213 @@ |
|||
import torch.nn as nn |
|||
import math |
|||
import torch.utils.model_zoo as model_zoo |
|||
|
|||
|
|||
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', |
|||
'resnet152'] |
|||
|
|||
|
|||
model_urls = { |
|||
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|||
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|||
} |
|||
|
|||
|
|||
def conv3x3(in_planes, out_planes, stride=1): |
|||
"3x3 convolution with padding" |
|||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|||
padding=1, bias=False) |
|||
|
|||
|
|||
class BasicBlock(nn.Module): |
|||
expansion = 1 |
|||
|
|||
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|||
super(BasicBlock, self).__init__() |
|||
self.conv1 = conv3x3(inplanes, planes, stride) |
|||
self.bn1 = nn.BatchNorm2d(planes) |
|||
self.relu = nn.ReLU(inplace=True) |
|||
self.conv2 = conv3x3(planes, planes) |
|||
self.bn2 = nn.BatchNorm2d(planes) |
|||
self.downsample = downsample |
|||
self.stride = stride |
|||
|
|||
def forward(self, x): |
|||
residual = x |
|||
|
|||
out = self.conv1(x) |
|||
out = self.bn1(out) |
|||
out = self.relu(out) |
|||
|
|||
out = self.conv2(out) |
|||
out = self.bn2(out) |
|||
|
|||
if self.downsample is not None: |
|||
residual = self.downsample(x) |
|||
|
|||
out += residual |
|||
out = self.relu(out) |
|||
|
|||
return out |
|||
|
|||
|
|||
class Bottleneck(nn.Module): |
|||
expansion = 4 |
|||
|
|||
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|||
super(Bottleneck, self).__init__() |
|||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|||
self.bn1 = nn.BatchNorm2d(planes) |
|||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|||
padding=1, bias=False) |
|||
self.bn2 = nn.BatchNorm2d(planes) |
|||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|||
self.bn3 = nn.BatchNorm2d(planes * 4) |
|||
self.relu = nn.ReLU(inplace=True) |
|||
self.downsample = downsample |
|||
self.stride = stride |
|||
|
|||
def forward(self, x): |
|||
residual = x |
|||
|
|||
out = self.conv1(x) |
|||
out = self.bn1(out) |
|||
out = self.relu(out) |
|||
|
|||
out = self.conv2(out) |
|||
out = self.bn2(out) |
|||
out = self.relu(out) |
|||
|
|||
out = self.conv3(out) |
|||
out = self.bn3(out) |
|||
|
|||
if self.downsample is not None: |
|||
residual = self.downsample(x) |
|||
|
|||
out += residual |
|||
out = self.relu(out) |
|||
|
|||
return out |
|||
|
|||
|
|||
class ResNet(nn.Module): |
|||
|
|||
def __init__(self, block, layers, num_classes=1000): |
|||
self.inplanes = 64 |
|||
super(ResNet, self).__init__() |
|||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|||
bias=False) |
|||
self.bn1 = nn.BatchNorm2d(64) |
|||
self.relu = nn.ReLU(inplace=True) |
|||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|||
self.layer1 = self._make_layer(block, 64, layers[0]) |
|||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|||
self.avgpool = nn.AvgPool2d(7, stride=1) |
|||
# self.fc = nn.Linear(512 * block.expansion, num_classes) |
|||
|
|||
for m in self.modules(): |
|||
if isinstance(m, nn.Conv2d): |
|||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|||
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|||
elif isinstance(m, nn.BatchNorm2d): |
|||
m.weight.data.fill_(1) |
|||
m.bias.data.zero_() |
|||
|
|||
def _make_layer(self, block, planes, blocks, stride=1): |
|||
downsample = None |
|||
if stride != 1 or self.inplanes != planes * block.expansion: |
|||
downsample = nn.Sequential( |
|||
nn.Conv2d(self.inplanes, planes * block.expansion, |
|||
kernel_size=1, stride=stride, bias=False), |
|||
nn.BatchNorm2d(planes * block.expansion), |
|||
) |
|||
|
|||
layers = [] |
|||
layers.append(block(self.inplanes, planes, stride, downsample)) |
|||
self.inplanes = planes * block.expansion |
|||
for i in range(1, blocks): |
|||
layers.append(block(self.inplanes, planes)) |
|||
|
|||
return nn.Sequential(*layers) |
|||
|
|||
def forward(self, x): |
|||
x = self.conv1(x) |
|||
x = self.bn1(x) |
|||
x = self.relu(x) |
|||
x = self.maxpool(x) |
|||
|
|||
x = self.layer1(x) |
|||
x = self.layer2(x) |
|||
x = self.layer3(x) |
|||
x = self.layer4(x) |
|||
|
|||
x = self.avgpool(x) |
|||
# x = x.view(x.size(0), -1) |
|||
# x = self.fc(x) |
|||
|
|||
return x |
|||
|
|||
|
|||
def resnet18(pretrained=False, **kwargs): |
|||
"""Constructs a ResNet-18 model. |
|||
|
|||
Args: |
|||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|||
""" |
|||
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) |
|||
if pretrained: |
|||
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) |
|||
return model |
|||
|
|||
|
|||
def resnet34(pretrained=False, **kwargs): |
|||
"""Constructs a ResNet-34 model. |
|||
|
|||
Args: |
|||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|||
""" |
|||
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) |
|||
if pretrained: |
|||
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) |
|||
return model |
|||
|
|||
|
|||
def resnet50(pretrained=False, **kwargs): |
|||
"""Constructs a ResNet-50 model. |
|||
|
|||
Args: |
|||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|||
""" |
|||
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) |
|||
if pretrained: |
|||
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) |
|||
return model |
|||
|
|||
|
|||
def resnet101(pretrained=False, **kwargs): |
|||
"""Constructs a ResNet-101 model. |
|||
|
|||
Args: |
|||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|||
""" |
|||
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) |
|||
if pretrained: |
|||
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) |
|||
return model |
|||
|
|||
|
|||
def resnet152(pretrained=False, **kwargs): |
|||
"""Constructs a ResNet-152 model. |
|||
|
|||
Args: |
|||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|||
""" |
|||
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) |
|||
if pretrained: |
|||
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) |
|||
return model |
Loading…
Reference in new issue