Browse Source

ResNet changes for Office dataset

master
Fazil Altinel 4 years ago
parent
commit
eb1daa18bf
  1. 6
      README.md
  2. 30
      core/train.py
  3. 2
      datasets/office.py
  4. 30
      experiments/office.py
  5. 3
      models/alexnet.py
  6. 44
      models/model.py
  7. 213
      models/resnet.py
  8. 15
      utils/utils.py

6
README.md

@ -9,8 +9,8 @@ A PyTorch implementation for paper *[Unsupervised Domain Adaptation by Backpropa
## Environment
- Python 3.6
- PyTorch 1.0
- Python 3.8.5
- PyTorch 1.6.0
## Note
@ -26,6 +26,8 @@ Before running the training code, make sure that `DATASETDIR` environment variab
- `GTSRBmodel()`
- `AlexModel`
- not successful, mainly due to the pretrained model difference
- `ResNet50`
- Better and more stable results than AlexNet.
## Result

30
core/train.py

@ -126,20 +126,30 @@ def train_dann(model, params, src_data_loader, tgt_data_loader, tgt_data_loader_
optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum, weight_decay=params.weight_decay)
else:
print("training office task")
# parameter_list = [{
# "params": model.features.parameters(),
# "lr": 0.001
# }, {
# "params": model.fc.parameters(),
# "lr": 0.001
# }, {
# "params": model.bottleneck.parameters()
# }, {
# "params": model.classifier.parameters()
# }, {
# "params": model.discriminator.parameters()
# }]
parameter_list = [{
"params": model.features.parameters(),
"lr": 0.001
"params": model.feature_extractor.parameters(),
"lr": 0.0001
}, {
"params": model.fc.parameters(),
"lr": 0.001
"params": model.classifier.parameters(),
"lr": 0.0001
}, {
"params": model.bottleneck.parameters()
}, {
"params": model.classifier.parameters()
}, {
"params": model.discriminator.parameters()
"params": model.discriminator.parameters(),
"lr": 0.0001
}]
optimizer = optim.SGD(parameter_list, lr=0.001, momentum=0.9)
optimizer = optim.SGD(parameter_list, momentum=0.9, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss()

2
datasets/office.py

@ -17,7 +17,7 @@ def get_office(dataset_root, batch_size, category):
# datasets and data_loader
office_dataset = datasets.ImageFolder(
os.path.join(dataset_root, 'office', category, 'images'), transform=pre_process)
os.path.join(dataset_root, 'office31', category, 'images'), transform=pre_process)
office_dataloader = torch.utils.data.DataLoader(
dataset=office_dataset, batch_size=batch_size, shuffle=True, num_workers=0)

30
experiments/office.py

@ -1,19 +1,28 @@
import os
import sys
import torch
sys.path.append('../')
sys.path.append(os.path.abspath('.'))
from core.train import train_dann
from core.test import test
from models.model import AlexModel
from models.model import ResNet50
from utils.utils import get_data_loader, init_model, init_random_seed
from utils.altutils import setLogger
# To avoid proxy issues while downloading pretrained model
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
class Config(object):
# params for path
dataset_root = os.path.expanduser(os.path.join('~', 'Datasets'))
model_root = os.path.expanduser(os.path.join('~', 'Models', 'pytorch-dann'))
currentDir = os.path.dirname(os.path.realpath(__file__))
dataset_root = os.environ["DATASETDIR"]
model_root = os.path.join(currentDir, 'checkpoints')
finetune_flag = True
lr_adjust_flag = 'non-simple'
src_only_flag = False
# params for datasets and data loader
batch_size = 32
@ -52,6 +61,10 @@ class Config(object):
params = Config()
currentDir = os.path.dirname(os.path.realpath(__file__))
logFile = os.path.join(currentDir+'/../', 'dann-{}-{}.log'.format(params.src_dataset, params.tgt_dataset))
loggi = setLogger(logFile)
# init random seed
init_random_seed(params.manual_seed)
@ -63,12 +76,13 @@ src_data_loader = get_data_loader(params.src_dataset, params.dataset_root, param
tgt_data_loader = get_data_loader(params.tgt_dataset, params.dataset_root, params.batch_size)
# load dann model
dann = init_model(net=AlexModel(), restore=None)
# dann = init_model(net=AlexModel(), restore=None)
dann = init_model(net=ResNet50(), restore=None)
# train dann model
print("Start training dann model.")
if not (dann.restored and params.dann_restore):
dann = train_dann(dann, params, src_data_loader, tgt_data_loader, tgt_data_loader, device)
# if not (dann.restored and params.dann_restore):
dann = train_dann(dann, params, src_data_loader, tgt_data_loader, tgt_data_loader, device, loggi)
print('done')

3
models/alexnet.py

@ -80,9 +80,10 @@ def alexnet(pretrained=False, **kwargs):
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model_root = os.environ["MODELDIR"]
model = AlexNet(**kwargs)
if pretrained:
model_path = '/home/wogong/Models/alexnet.pth.tar'
model_path = os.path.join(model_root, 'alexnet.pth.tar')
pretrained_model = torch.load(model_path)
model.load_state_dict(pretrained_model['state_dict'])
return model

44
models/model.py

@ -1,9 +1,12 @@
"""DANN model."""
import os
import torch
import torch.nn as nn
from .functions import ReverseLayerF
from torchvision import models
from .alexnet import alexnet
from .resnet import resnet50
from utils.utils import weights_init
class Classifier(nn.Module):
@ -260,7 +263,8 @@ class AlexModel(nn.Module):
def __init__(self):
super(AlexModel, self).__init__()
self.restored = False
model_alexnet = models.alexnet(pretrained=True)
# model_alexnet = models.alexnet(pretrained=True)
model_alexnet = alexnet(pretrained=True)
self.features = model_alexnet.features
@ -302,3 +306,39 @@ class AlexModel(nn.Module):
domain_output = self.discriminator(reverse_bottleneck)
return class_output, domain_output
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
resnetModel = models.resnet50(pretrained=True)
feature_map = list(resnetModel.children())
feature_map.pop()
self.feature_extractor = nn.Sequential(*feature_map)
self.classifier = nn.Sequential(
nn.Linear(2048, 31),
)
self.discriminator = nn.Sequential(
nn.Linear(2048, 1024),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(1024, 1024),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(1024, 2),
)
def forward(self, input_data, alpha=-1, sln='dann'):
input_data = input_data.expand(input_data.data.shape[0], 3, 227, 227)
feature = self.feature_extractor(input_data)
feature = feature.view(-1, 2048)
reverse_bottleneck = ReverseLayerF.apply(feature, alpha)
class_output = self.classifier(feature)
domain_output = self.discriminator(reverse_bottleneck)
return class_output, domain_output

213
models/resnet.py

@ -0,0 +1,213 @@
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model

15
utils/utils.py

@ -35,6 +35,19 @@ def init_weights(layer):
layer.bias.data.fill_(0)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
size = m.weight.size()
m.weight.data.normal_(0.0, 0.1)
m.bias.data.fill_(0)
def init_random_seed(manual_seed):
"""Init random seed."""
seed = None
@ -61,6 +74,8 @@ def get_data_loader(name, dataset_root, batch_size, train=True):
return get_office(dataset_root, batch_size, 'amazon')
elif name == "webcam31":
return get_office(dataset_root, batch_size, 'webcam')
elif name == "dslr31":
return get_office(dataset_root, batch_size, 'dslr')
elif name == "webcam10":
return get_officecaltech(dataset_root, batch_size, 'webcam')
elif name == "syndigits":

Loading…
Cancel
Save