Browse Source

add legacy GTSRB dataloader for comparison.

master
wogong 5 years ago
parent
commit
aa7fcfc59d
  1. 45
      datasets/gtsrb_legacy.py

45
datasets/gtsrb_legacy.py

@ -0,0 +1,45 @@
"""Dataset setting and data loader for GTSRB."""
import os
import torch
from torchvision import datasets, transforms
import torch.utils.data as data
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
def get_gtsrb(dataset_root, batch_size, train):
"""Get GTSRB datasets loader."""
shuffle_dataset = True
random_seed = 42
train_size = 31367
# image pre-processing
pre_process = transforms.Compose([
transforms.Resize((40, 40)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
# datasets and data_loader
gtsrb_dataset = datasets.ImageFolder(
os.path.join(dataset_root, 'Final_Training', 'Images'), transform=pre_process)
dataset_size = len(gtsrb_dataset)
indices = list(range(dataset_size))
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[:train_size], indices[train_size:]
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
if train:
gtsrb_dataloader_train = torch.utils.data.DataLoader(gtsrb_dataset, batch_size=batch_size,
sampler=train_sampler)
return gtsrb_dataloader_train
else:
gtsrb_dataloader_test = torch.utils.data.DataLoader(gtsrb_dataset, batch_size=batch_size,
sampler=valid_sampler)
return gtsrb_dataloader_test
Loading…
Cancel
Save