Browse Source

initial commit

master
wogong 7 years ago
parent
commit
97fa9d0121
  1. 5
      .gitignore
  2. 27
      README.md
  3. 0
      core/__init__.py
  4. 96
      core/dann.py
  5. 65
      core/pretrain.py
  6. 159
      core/test.py
  7. 5
      datasets/__init__.py
  8. 31
      datasets/mnist.py
  9. 70
      datasets/mnistm.py
  10. 39
      datasets/svhn.py
  11. 50
      main.py
  12. 0
      models/__init__.py
  13. 39
      models/classifier.py
  14. 18
      models/functions.py
  15. 50
      models/model.py
  16. 43
      params.py
  17. 96
      utils.py

5
.gitignore

@ -99,3 +99,8 @@ ENV/
# mypy # mypy
.mypy_cache/ .mypy_cache/
# personal
.idea
.DS_Store
main_legacy.py

27
README.md

@ -0,0 +1,27 @@
# PyTorch-DANN
A pytorch implementation for paper *[Unsupervised Domain Adaptation by Backpropagation](http://sites.skoltech.ru/compvision/projects/grl/)*
InProceedings (icml2015-ganin15)
Ganin, Y. & Lempitsky, V.
Unsupervised Domain Adaptation by Backpropagation
Proceedings of the 32nd International Conference on Machine Learning, 2015
## Environment
- Python 2.7
- PyTorch 0.3.1
## Result
results of the default `params.py`
| | MNIST (Source) | USPS (Target) |
| :--------------------------------: | :------------: | :-----------: |
| Source Classifier | 99.140000% | 83.978495% |
| DANN | | 97.634409% |
## Credit
- <https://github.com/fungtion/DANN>
- <https://github.com/corenel/torchsharp>

0
core/__init__.py

96
core/dann.py

@ -0,0 +1,96 @@
"""Train dann."""
import torch
import torch.nn as nn
import torch.optim as optim
import params
from utils import make_variable, save_model
import numpy as np
from core.test import eval
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
def train_dann(dann, src_data_loader, tgt_data_loader, tgt_data_loader_eval):
"""Train dann."""
####################
# 1. setup network #
####################
# set train state for Dropout and BN layers
dann.train()
# setup criterion and optimizer
optimizer = optim.Adam(dann.parameters(), lr=params.lr)
criterion = nn.NLLLoss()
for p in dann.parameters():
p.requires_grad = True
####################
# 2. train network #
####################
# prepare domain label
label_src = make_variable(torch.zeros(params.batch_size).long()) # source 0
label_tgt = make_variable(torch.ones(params.batch_size).long()) # target 1
for epoch in range(params.num_epochs):
# zip source and target data pair
len_dataloader = min(len(src_data_loader), len(tgt_data_loader))
data_zip = enumerate(zip(src_data_loader, tgt_data_loader))
for step, ((images_src, class_src), (images_tgt, _)) in data_zip:
p = float(step + epoch * len_dataloader) / params.num_epochs / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
# make images variable
class_src = make_variable(class_src)
images_src = make_variable(images_src)
images_tgt = make_variable(images_tgt)
# zero gradients for optimizer
optimizer.zero_grad()
# train on source domain
src_class_output, src_domain_output = dann(input_data=images_src, alpha=alpha)
src_loss_class = criterion(src_class_output, class_src)
src_loss_domain = criterion(src_domain_output, label_src)
# train on target domain
_, tgt_domain_output = dann(input_data=images_tgt, alpha=alpha)
tgt_loss_domain = criterion(tgt_domain_output, label_tgt)
loss = src_loss_class + src_loss_domain + tgt_loss_domain
# optimize dann
loss.backward()
optimizer.step()
# print step info
if ((step + 1) % params.log_step == 0):
print("Epoch [{}/{}] Step [{}/{}]: src_loss_class={}, src_loss_domain={}, tgt_loss_domain={}, loss={}"
.format(epoch + 1,
params.num_epochs,
step + 1,
len_dataloader,
src_loss_class.data[0],
src_loss_domain.data[0],
tgt_loss_domain.data[0],
loss.data[0]))
# eval model on test set
if ((epoch + 1) % params.eval_step == 0):
eval(dann, tgt_data_loader_eval)
dann.train()
# save model parameters
if ((epoch + 1) % params.save_step == 0):
save_model(dann, params.src_dataset + '-' + params.tgt_dataset + "-dann-{}.pt".format(epoch + 1))
# save final model
save_model(dann, params.src_dataset + '-' + params.tgt_dataset + "-dann-final.pt")
return dann

65
core/pretrain.py

@ -0,0 +1,65 @@
"""Train classifier for source dataset."""
import torch.nn as nn
import torch.optim as optim
import params
from utils import make_variable, save_model
from core.test import eval_src
def train_src(model, data_loader):
"""Train classifier for source domain."""
####################
# 1. setup network #
####################
# set train state for Dropout and BN layers
model.train()
# setup criterion and optimizer
optimizer = optim.Adam(model.parameters(), lr=params.lr)
loss_class = nn.NLLLoss()
####################
# 2. train network #
####################
for epoch in range(params.num_epochs_src):
for step, (images, labels) in enumerate(data_loader):
# make images and labels variable
images = make_variable(images)
labels = make_variable(labels.squeeze_())
# zero gradients for optimizer
optimizer.zero_grad()
# compute loss for critic
preds = model(images)
loss = loss_class(preds, labels)
# optimize source classifier
loss.backward()
optimizer.step()
# print step info
if ((step + 1) % params.log_step_src == 0):
print("Epoch [{}/{}] Step [{}/{}]: loss={}"
.format(epoch + 1,
params.num_epochs_src,
step + 1,
len(data_loader),
loss.data[0]))
# eval model on test set
if ((epoch + 1) % params.eval_step_src == 0):
eval_src(model, data_loader)
model.train()
# save model parameters
if ((epoch + 1) % params.save_step_src == 0):
save_model(model, params.src_dataset + "-source-classifier-{}.pt".format(epoch + 1))
# save final model
save_model(model, params.src_dataset + "-source-classifier-final.pt")
return model

159
core/test.py

@ -0,0 +1,159 @@
import os
import torch.backends.cudnn as cudnn
import torch.utils.data
from torch.autograd import Variable
import torch.nn as nn
import params
from utils import make_variable
def test(dataloader, epoch):
if torch.cuda.is_available():
cuda = True
cudnn.benchmark = True
""" training """
my_net = torch.load(os.path.join(
params.model_root, params.src_dataset + '_' + params.tgt_dataset + '_model_epoch_' + str(epoch) + '.pth'
))
my_net = my_net.eval()
if cuda:
my_net = my_net.cuda()
len_dataloader = len(dataloader)
data_target_iter = iter(dataloader)
i = 0
n_total = 0
n_correct = 0
while i < len_dataloader:
# test model using target data
data_target = data_target_iter.next()
t_img, t_label = data_target
batch_size = len(t_label)
input_img = torch.FloatTensor(batch_size, 3, params.image_size, params.image_size)
class_label = torch.LongTensor(batch_size)
if cuda:
t_img = t_img.cuda()
t_label = t_label.cuda()
input_img = input_img.cuda()
class_label = class_label.cuda()
input_img.resize_as_(t_img).copy_(t_img)
class_label.resize_as_(t_label).copy_(t_label)
inputv_img = Variable(input_img)
classv_label = Variable(class_label)
class_output, _ = my_net(input_data=inputv_img, alpha=params.alpha)
pred = class_output.data.max(1, keepdim=True)[1]
n_correct += pred.eq(classv_label.data.view_as(pred)).cpu().sum()
n_total += batch_size
i += 1
accu = n_correct * 1.0 / n_total
print 'epoch: %d, accuracy: %f' % (epoch, accu)
def test_from_save(model, saved_model, data_loader):
"""Evaluate classifier for source domain."""
# set eval state for Dropout and BN layers
classifier = model.load_state_dict(torch.load(saved_model))
classifier.eval()
# init loss and accuracy
loss = 0.0
acc = 0.0
# set loss function
criterion = nn.NLLLoss()
# evaluate network
for (images, labels) in data_loader:
images = make_variable(images, volatile=True)
labels = make_variable(labels) #labels = labels.squeeze(1)
preds = classifier(images)
criterion(preds, labels)
loss += criterion(preds, labels).data[0]
pred_cls = preds.data.max(1)[1]
acc += pred_cls.eq(labels.data).cpu().sum()
loss /= len(data_loader)
acc /= len(data_loader.dataset)
print("Avg Loss = {}, Avg Accuracy = {:2%}".format(loss, acc))
def eval(model, data_loader):
"""Evaluate model for dataset."""
# set eval state for Dropout and BN layers
model.eval()
# init loss and accuracy
loss = 0.0
acc = 0.0
# set loss function
criterion = nn.NLLLoss()
# evaluate network
for (images, labels) in data_loader:
images = make_variable(images, volatile=True)
labels = make_variable(labels) #labels = labels.squeeze(1)
preds, _ = model(images, alpha=0)
criterion(preds, labels)
loss += criterion(preds, labels).data[0]
pred_cls = preds.data.max(1)[1]
acc += pred_cls.eq(labels.data).cpu().sum()
loss /= len(data_loader)
acc /= len(data_loader.dataset)
print("Avg Loss = {}, Avg Accuracy = {:2%}".format(loss, acc))
def eval_src(model, data_loader):
"""Evaluate classifier for source domain."""
# set eval state for Dropout and BN layers
model.eval()
# init loss and accuracy
loss = 0.0
acc = 0.0
# set loss function
criterion = nn.NLLLoss()
# evaluate network
for (images, labels) in data_loader:
images = make_variable(images, volatile=True)
labels = make_variable(labels) #labels = labels.squeeze(1)
preds = model(images)
criterion(preds, labels)
loss += criterion(preds, labels).data[0]
pred_cls = preds.data.max(1)[1]
acc += pred_cls.eq(labels.data).cpu().sum()
loss /= len(data_loader)
acc /= len(data_loader.dataset)
print("Avg Loss = {}, Avg Accuracy = {:2%}".format(loss, acc))

5
datasets/__init__.py

@ -0,0 +1,5 @@
from .mnist import get_mnist
from .mnistm import get_mnistm
from .svhn import get_svhn
__all__ = (get_mnist, get_svhn, get_mnistm)

31
datasets/mnist.py

@ -0,0 +1,31 @@
"""Dataset setting and data loader for MNIST."""
import torch
from torchvision import datasets, transforms
import os
import params
def get_mnist(train):
"""Get MNIST datasets loader."""
# image pre-processing
pre_process = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
mean=params.dataset_mean,
std=params.dataset_std)])
# datasets and data loader
mnist_dataset = datasets.MNIST(root=os.path.join(params.dataset_root,'mnist'),
train=train,
transform=pre_process,
download=False)
mnist_data_loader = torch.utils.data.DataLoader(
dataset=mnist_dataset,
batch_size=params.batch_size,
shuffle=True,
drop_last=True)
return mnist_data_loader

70
datasets/mnistm.py

@ -0,0 +1,70 @@
"""Dataset setting and data loader for MNIST_M."""
import torch
from torchvision import datasets, transforms
import torch.utils.data as data
from PIL import Image
import os
import params
class GetLoader(data.Dataset):
def __init__(self, data_root, data_list, transform=None):
self.root = data_root
self.transform = transform
f = open(data_list, 'r')
data_list = f.readlines()
f.close()
self.n_data = len(data_list)
self.img_paths = []
self.img_labels = []
for data in data_list:
self.img_paths.append(data[:-3])
self.img_labels.append(data[-2])
def __getitem__(self, item):
img_paths, labels = self.img_paths[item], self.img_labels[item]
imgs = Image.open(os.path.join(self.root, img_paths)).convert('RGB')
if self.transform is not None:
imgs = self.transform(imgs)
labels = int(labels)
return imgs, labels
def __len__(self):
return self.n_data
def get_mnistm(train):
"""Get MNISTM datasets loader."""
# image pre-processing
pre_process = transforms.Compose([transforms.Resize(params.image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=params.dataset_mean,
std=params.dataset_std)])
# datasets and data_loader
if train:
train_list = os.path.join(params.dataset_root, 'mnist_m','mnist_m_train_labels.txt')
mnistm_dataset = GetLoader(
data_root=os.path.join(params.dataset_root, 'mnist_m', 'mnist_m_train'),
data_list=train_list,
transform=pre_process)
else:
train_list = os.path.join(params.dataset_root, 'mnist_m', 'mnist_m_test_labels.txt')
mnistm_dataset = GetLoader(
data_root=os.path.join(params.dataset_root, 'mnist_m', 'mnist_m_test'),
data_list=train_list,
transform=pre_process)
mnistm_dataloader = torch.utils.data.DataLoader(
dataset=mnistm_dataset,
batch_size=params.batch_size,
shuffle=True,
num_workers=8)
return mnistm_dataloader

39
datasets/svhn.py

@ -0,0 +1,39 @@
"""Dataset setting and data loader for SVHN."""
import torch
from torchvision import datasets, transforms
import os
import params
def get_svhn(train):
"""Get SVHN datasets loader."""
# image pre-processing
pre_process = transforms.Compose([transforms.Grayscale(),
transforms.Resize(params.image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=params.dataset_mean,
std=params.dataset_std)])
# datasets and data loader
if train:
svhn_dataset = datasets.SVHN(root=os.path.join(params.dataset_root,'svhn'),
split='train',
transform=pre_process,
download=True)
else:
svhn_dataset = datasets.SVHN(root=os.path.join(params.dataset_root,'svhn'),
split='test',
transform=pre_process,
download=True)
svhn_data_loader = torch.utils.data.DataLoader(
dataset=svhn_dataset,
batch_size=params.batch_size,
shuffle=True,
drop_last=True)
return svhn_data_loader

50
main.py

@ -0,0 +1,50 @@
from models.model import CNNModel
from models.classifier import Classifier
from core.dann import train_dann
from core.test import eval, eval_src
from core.pretrain import train_src
import params
from utils import get_data_loader, init_model, init_random_seed
# init random seed
init_random_seed(params.manual_seed)
# load dataset
src_data_loader = get_data_loader(params.src_dataset)
src_data_loader_eval = get_data_loader(params.src_dataset, train=False)
tgt_data_loader = get_data_loader(params.tgt_dataset)
tgt_data_loader_eval = get_data_loader(params.tgt_dataset, train=False)
# load source classifier
src_classifier = init_model(net=Classifier(), restore=params.src_classifier_restore)
# train source model
print("=== Training classifier for source domain ===")
if not (src_classifier.restored and params.src_model_trained):
src_classifier = train_src(src_classifier, src_data_loader)
# eval source model on both source and target domain
print("=== Evaluating source classifier for source domain ===")
eval_src(src_classifier, src_data_loader_eval)
print("=== Evaluating source classifier for target domain ===")
eval_src(src_classifier, tgt_data_loader_eval)
# load dann model
dann = init_model(net=CNNModel(), restore=params.dann_restore)
# train dann model
print("=== Training dann model ===")
if not (dann.restored and params.dann_restore):
dann = train_dann(dann, src_data_loader, tgt_data_loader, tgt_data_loader_eval)
# eval dann model
print("=== Evaluating dann for source domain ===")
eval(dann, src_data_loader_eval)
print("=== Evaluating dann for target domain ===")
eval(dann, tgt_data_loader_eval)
print('done')

0
models/__init__.py

39
models/classifier.py

@ -0,0 +1,39 @@
"""Classifier for source domain"""
import torch.nn as nn
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.restored = False
self.feature = nn.Sequential()
self.feature.add_module('f_conv1', nn.Conv2d(1, 64, kernel_size=5))
self.feature.add_module('f_bn1', nn.BatchNorm2d(64))
self.feature.add_module('f_pool1', nn.MaxPool2d(2))
self.feature.add_module('f_relu1', nn.ReLU(True))
self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5))
self.feature.add_module('f_bn2', nn.BatchNorm2d(50))
self.feature.add_module('f_drop1', nn.Dropout2d())
self.feature.add_module('f_pool2', nn.MaxPool2d(2))
self.feature.add_module('f_relu2', nn.ReLU(True))
self.class_classifier = nn.Sequential()
self.class_classifier.add_module('c_fc1', nn.Linear(50 * 4 * 4, 100))
self.class_classifier.add_module('c_bn1', nn.BatchNorm2d(100))
self.class_classifier.add_module('c_relu1', nn.ReLU(True))
self.class_classifier.add_module('c_drop1', nn.Dropout2d())
self.class_classifier.add_module('c_fc2', nn.Linear(100, 100))
self.class_classifier.add_module('c_bn2', nn.BatchNorm2d(100))
self.class_classifier.add_module('c_relu2', nn.ReLU(True))
self.class_classifier.add_module('c_fc3', nn.Linear(100, 10))
self.class_classifier.add_module('c_softmax', nn.LogSoftmax(dim=1))
def forward(self, input_data):
input_data = input_data.expand(input_data.data.shape[0], 1, 28, 28)
feature = self.feature(input_data)
feature = feature.view(-1, 50 * 4 * 4)
class_output = self.class_classifier(feature)
return class_output

18
models/functions.py

@ -0,0 +1,18 @@
from torch.autograd import Function
class ReverseLayerF(Function):
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
output = grad_output.neg() * ctx.alpha
return output, None

50
models/model.py

@ -0,0 +1,50 @@
"""DANN model."""
import torch.nn as nn
from functions import ReverseLayerF
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.restored = False
self.feature = nn.Sequential()
self.feature.add_module('f_conv1', nn.Conv2d(1, 64, kernel_size=5))
self.feature.add_module('f_bn1', nn.BatchNorm2d(64))
self.feature.add_module('f_pool1', nn.MaxPool2d(2))
self.feature.add_module('f_relu1', nn.ReLU(True))
self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5))
self.feature.add_module('f_bn2', nn.BatchNorm2d(50))
self.feature.add_module('f_drop1', nn.Dropout2d())
self.feature.add_module('f_pool2', nn.MaxPool2d(2))
self.feature.add_module('f_relu2', nn.ReLU(True))
self.class_classifier = nn.Sequential()
self.class_classifier.add_module('c_fc1', nn.Linear(50 * 4 * 4, 100))
self.class_classifier.add_module('c_bn1', nn.BatchNorm2d(100))
self.class_classifier.add_module('c_relu1', nn.ReLU(True))
self.class_classifier.add_module('c_drop1', nn.Dropout2d())
self.class_classifier.add_module('c_fc2', nn.Linear(100, 100))
self.class_classifier.add_module('c_bn2', nn.BatchNorm2d(100))
self.class_classifier.add_module('c_relu2', nn.ReLU(True))
self.class_classifier.add_module('c_fc3', nn.Linear(100, 10))
self.class_classifier.add_module('c_softmax', nn.LogSoftmax(dim=1))
self.domain_classifier = nn.Sequential()
self.domain_classifier.add_module('d_fc1', nn.Linear(50 * 4 * 4, 100))
self.domain_classifier.add_module('d_bn1', nn.BatchNorm2d(100))
self.domain_classifier.add_module('d_relu1', nn.ReLU(True))
self.domain_classifier.add_module('d_fc2', nn.Linear(100, 2))
self.domain_classifier.add_module('d_softmax', nn.LogSoftmax(dim=1))
def forward(self, input_data, alpha):
input_data = input_data.expand(input_data.data.shape[0], 1, 28, 28)
feature = self.feature(input_data)
feature = feature.view(-1, 50 * 4 * 4)
reverse_feature = ReverseLayerF.apply(feature, alpha)
class_output = self.class_classifier(feature)
domain_output = self.domain_classifier(reverse_feature)
return class_output, domain_output

43
params.py

@ -0,0 +1,43 @@
"""Params for DANN."""
import os
# params for path
dataset_root = os.path.expanduser(os.path.join('~', 'Datasets'))
model_root = os.path.expanduser(os.path.join('~', 'Models', 'pytorch-DANN'))
# params for datasets and data loader
dataset_mean_value = 0.5
dataset_std_value = 0.5
dataset_mean = (dataset_mean_value, dataset_mean_value, dataset_mean_value)
dataset_std = (dataset_std_value, dataset_std_value, dataset_std_value)
batch_size = 128
image_size = 28
# params for source dataset
src_dataset = "SVHN"
src_model_trained = True
src_classifier_restore = os.path.join(model_root,src_dataset + '-source-classifier-final.pt')
# params for target dataset
tgt_dataset = "MNIST"
tgt_model_trained = True
dann_restore = os.path.join(model_root , src_dataset + '-' + tgt_dataset + '-dann-final.pt')
# params for pretrain
num_epochs_src = 100
log_step_src = 10
save_step_src = 20
eval_step_src = 20
# params for training dann
num_epochs = 400
log_step = 50
save_step = 50
eval_step = 20
manual_seed = 8888
alpha = 0
# params for optimizing models
lr = 2e-4

96
utils.py

@ -0,0 +1,96 @@
"""Utilities for ADDA."""
import os
import random
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import params
from datasets import get_mnist, get_mnistm, get_svhn
def make_variable(tensor, volatile=False):
"""Convert Tensor to Variable."""
if torch.cuda.is_available():
tensor = tensor.cuda()
return Variable(tensor, volatile=volatile)
def make_cuda(tensor):
"""Use CUDA if it's available."""
if torch.cuda.is_available():
tensor = tensor.cuda()
return tensor
def denormalize(x, std, mean):
"""Invert normalization, and then convert array into image."""
out = x * std + mean
return out.clamp(0, 1)
def init_weights(layer):
"""Init weights for layers w.r.t. the original paper."""
layer_name = layer.__class__.__name__
if layer_name.find("Conv") != -1:
layer.weight.data.normal_(0.0, 0.02)
elif layer_name.find("BatchNorm") != -1:
layer.weight.data.normal_(1.0, 0.02)
layer.bias.data.fill_(0)
def init_random_seed(manual_seed):
"""Init random seed."""
seed = None
if manual_seed is None:
seed = random.randint(1, 10000)
else:
seed = manual_seed
print("use random seed: {}".format(seed))
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def get_data_loader(name, train=True):
"""Get data loader by name."""
if name == "MNIST":
return get_mnist(train)
elif name == "MNISTM":
return get_mnistm(train)
elif name == "SVHN":
return get_svhn(train)
def init_model(net, restore):
"""Init models with cuda and weights."""
# init weights of model
net.apply(init_weights)
# restore model weights
if restore is not None and os.path.exists(restore):
net.load_state_dict(torch.load(restore))
net.restored = True
print("Restore model from: {}".format(os.path.abspath(restore)))
else:
print("No trained model, train from scratch.")
# check if cuda is available
if torch.cuda.is_available():
cudnn.benchmark = True
net.cuda()
return net
def save_model(net, filename):
"""Save trained model."""
if not os.path.exists(params.model_root):
os.makedirs(params.model_root)
torch.save(net.state_dict(),
os.path.join(params.model_root, filename))
print("save pretrained model to: {}".format(os.path.join(params.model_root,
filename)))
Loading…
Cancel
Save