Implementation of "Adversarial Discriminative Domain Adaptation" in PyTorch
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

24 lines
1.0 KiB

import argparse
from core.experiment import run
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# NN
parser.add_argument('--in_channels', type=int, default=3)
parser.add_argument('--n_classes', type=int, default=10)
parser.add_argument('--trained', type=str, default='')
parser.add_argument('--slope', type=float, default=0.1)
# train
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--weight_decay', type=float, default=2.5e-5)
parser.add_argument('--epochs', type=int, default=512)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--betas', type=float, nargs='+', default=(.5, .999))
# misc
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--n_workers', type=int, default=0)
parser.add_argument('--logdir', type=str, default='outputs/garbage')
parser.add_argument('--message', '-m', type=str, default='')
args, unknown = parser.parse_known_args()
run(args)