You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.5 KiB
69 lines
2.5 KiB
import argparse
|
|
import os
|
|
import sys
|
|
sys.path.append(os.path.abspath('.'))
|
|
from torch import nn, optim
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.datasets import SVHN
|
|
from torchvision import transforms
|
|
from models.models import CNN
|
|
from core.trainer import train_source_cnn
|
|
from utils.utils import get_logger
|
|
|
|
|
|
def main(args):
|
|
if not os.path.exists(args.logdir):
|
|
os.makedirs(args.logdir)
|
|
logger = get_logger(os.path.join(args.logdir, 'train_source.log'))
|
|
logger.info(args)
|
|
|
|
dataset_root = os.environ["DATASETDIR"]
|
|
|
|
# data
|
|
source_transform = transforms.Compose([
|
|
transforms.ToTensor()]
|
|
)
|
|
# source_dataset_train = SVHN(
|
|
# dataset_root, 'train', transform=source_transform, download=True)
|
|
source_dataset_train = SVHN(
|
|
'input/', 'train', transform=source_transform, download=True)
|
|
source_dataset_test = SVHN(
|
|
'input/', 'test', transform=source_transform, download=True)
|
|
source_train_loader = DataLoader(
|
|
source_dataset_train, args.batch_size, shuffle=True,
|
|
drop_last=True,
|
|
num_workers=args.n_workers)
|
|
source_test_loader = DataLoader(
|
|
source_dataset_test, args.batch_size, shuffle=False,
|
|
num_workers=args.n_workers)
|
|
|
|
# train source CNN
|
|
source_cnn = CNN(in_channels=args.in_channels).to(args.device)
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(
|
|
source_cnn.parameters(),
|
|
lr=args.lr, weight_decay=args.weight_decay)
|
|
source_cnn = train_source_cnn(
|
|
source_cnn, source_train_loader, source_test_loader,
|
|
criterion, optimizer, args=args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
# NN
|
|
parser.add_argument('--in_channels', type=int, default=3)
|
|
parser.add_argument('--n_classes', type=int, default=10)
|
|
parser.add_argument('--trained', type=str, default='')
|
|
parser.add_argument('--slope', type=float, default=0.2)
|
|
# train
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
parser.add_argument('--weight_decay', type=float, default=2.5e-5)
|
|
parser.add_argument('--epochs', type=int, default=50)
|
|
parser.add_argument('--batch_size', type=int, default=128)
|
|
# misc
|
|
parser.add_argument('--device', type=str, default='cuda:0')
|
|
parser.add_argument('--n_workers', type=int, default=0)
|
|
parser.add_argument('--logdir', type=str, default='outputs/garbage')
|
|
parser.add_argument('--message', '-m', type=str, default='')
|
|
args, unknown = parser.parse_known_args()
|
|
main(args)
|
|
|