|
|
@ -7,6 +7,8 @@ class Encoder(nn.Module): |
|
|
|
super(Encoder, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_channels, 20, kernel_size=5, stride=1) |
|
|
|
self.conv2 = nn.Conv2d(20, 50, kernel_size=5, stride=1) |
|
|
|
self.bn1 = nn.BatchNorm2d(20) |
|
|
|
self.bn2 = nn.BatchNorm2d(50) |
|
|
|
# self.conv3 = nn.Conv2d(16, 120, kernel_size=4, stride=1) |
|
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.relu = nn.ReLU() |
|
|
@ -20,12 +22,13 @@ class Encoder(nn.Module): |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
bs = x.size(0) |
|
|
|
x = self.pool(self.relu(self.conv1(x))) |
|
|
|
x = self.pool(self.relu(self.conv2(x))) |
|
|
|
x = self.pool(self.relu(self.bn1(self.conv1(x)))) |
|
|
|
x = self.pool(self.relu(self.bn2(self.conv2(x)))) |
|
|
|
# x = self.dropout1(self.relu(self.conv3(x))) |
|
|
|
# x = self.relu(self.conv3(x)) |
|
|
|
x = x.view(bs, -1) |
|
|
|
x = self.dropout(self.fc(x)) |
|
|
|
x = self.dropout(x) |
|
|
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|