Implementation of "Adversarial Discriminative Domain Adaptation" in PyTorch
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

70 lines
2.5 KiB

6 years ago
import argparse
import os
import sys
sys.path.append(os.path.abspath('.'))
6 years ago
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision.datasets import SVHN
from torchvision import transforms
from models.models import CNN
from core.trainer import train_source_cnn
from utils.utils import get_logger
6 years ago
def main(args):
if not os.path.exists(args.logdir):
os.makedirs(args.logdir)
6 years ago
logger = get_logger(os.path.join(args.logdir, 'train_source.log'))
logger.info(args)
6 years ago
dataset_root = os.environ["DATASETDIR"]
6 years ago
# data
source_transform = transforms.Compose([
transforms.ToTensor()]
)
# source_dataset_train = SVHN(
# dataset_root, 'train', transform=source_transform, download=True)
6 years ago
source_dataset_train = SVHN(
'input/', 'train', transform=source_transform, download=True)
6 years ago
source_dataset_test = SVHN(
'input/', 'test', transform=source_transform, download=True)
6 years ago
source_train_loader = DataLoader(
source_dataset_train, args.batch_size, shuffle=True,
drop_last=True,
num_workers=args.n_workers)
source_test_loader = DataLoader(
source_dataset_test, args.batch_size, shuffle=False,
num_workers=args.n_workers)
# train source CNN
source_cnn = CNN(in_channels=args.in_channels).to(args.device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(
source_cnn.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
source_cnn = train_source_cnn(
source_cnn, source_train_loader, source_test_loader,
criterion, optimizer, args=args)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# NN
parser.add_argument('--in_channels', type=int, default=3)
parser.add_argument('--n_classes', type=int, default=10)
parser.add_argument('--trained', type=str, default='')
parser.add_argument('--slope', type=float, default=0.2)
# train
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=2.5e-5)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=128)
# misc
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--n_workers', type=int, default=0)
parser.add_argument('--logdir', type=str, default='outputs/garbage')
parser.add_argument('--message', '-m', type=str, default='')
args, unknown = parser.parse_known_args()
main(args)